Ontogeny in the visual system of Nile tilapia

Author:

Sabbah Shai1,Hui Jonathan1,Hauser Frances E.1,Nelson William A.1,Hawryshyn Craig W.12

Affiliation:

1. Department of Biology, Queen's University, Kingston, ON, Canada, K7L 3N6

2. Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada, K7L 3N6

Abstract

SUMMARY Retinal neurogenesis in fish facilitates cellular rearrangement throughout ontogeny, potentially allowing for optimization of the visual system to shifts in habitat and behaviour. To test this possibility, we studied the developmental trajectory of the photopic visual process in the Nile tilapia. We examined ontogenetic changes in lens transmission, photoreceptor sensitivity and post-receptoral sensitivity, and used these to estimate changes in cone pigment frequency and retinal circuitry. We observed an ontogenetic decrease in ultraviolet (UV) photoreceptor sensitivity, which resulted from a reduction in the SWS1 cone pigment frequency, and was associated with a reduction in lens transmission at UV wavelengths. Additionally, post-receptoral sensitivity to both UV and long wavelengths decreased with age, probably reflecting changes in photoreceptor sensitivity and retinal circuitry. This novel remodelling of retinal circuitry occurred following maturation of the visual system but prior to reaching adulthood, and thus may facilitate optimization of the visual system to the changing sensory demands. Interestingly, the changes in post-receptoral sensitivity to long wavelengths could not be predicted by the changes observed in lens transmission, cone pigment frequency or photoreceptor sensitivity. This finding emphasizes the importance of considering knowledge of visual sensitivity and retinal processing when studying visual adaptations and attempting to relate visual function to the natural environment. This study advances our understanding of ontogeny in visual systems and demonstrates that the association between different elements of the visual process can be explored effectively by examining visual function throughout ontogeny.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3