SOX9 modulates the expression of key transcription factors required for heart valve development

Author:

Garside Victoria C.12,Cullum Rebecca1,Alder Olivia1,Lu Daphne Y.1,Vander Werff Ryan3,Bilenky Mikhail4,Zhao Yongjun4,Jones Steven J. M.456,Marra Marco A.45,Underhill T. Michael253,Hoodless Pamela A.125

Affiliation:

1. Terry Fox Laboratory, BC Cancer Agency, Vancouver, V5Z1L3, Canada

2. Program in Cell and Developmental Biology, University of British Columbia, Vancouver, V6T1Z4, Canada

3. Biomedical Research Centre, University of British Columbia, Vancouver, V6T1Z4, Canada

4. Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, V5Z1L3, Canada

5. Department of Medical Genetics, University of British Columbia, Vancouver, V6T1Z4, Canada

6. Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, V5A1S6, Canada

Abstract

Heart valve formation initiates when endothelial cells of the heart transform into mesenchyme and populate the cardiac cushions. The transcription factor, SOX9, is highly expressed in the cardiac cushion mesenchyme, and is essential for heart valve development. Loss of Sox9 in mouse cardiac cushion mesenchyme alters cell proliferation, embryonic survival, and disrupts valve formation. Despite this important role, little is known regarding how SOX9 regulates heart valve formation or its transcriptional targets. Therefore, we mapped putative SOX9 binding sites by ChIP-Seq in embryonic day (E) 12.5 heart valves, a stage at which the valve mesenchyme is actively proliferating and initiating differentiation. Embryonic heart valves have been shown to express a high number of genes that are associated with chondrogenesis, including several extracellular matrix proteins and transcription factors that regulate chondrogenesis. Consequently, we compared regions of putative SOX9 DNA-binding between E12.5 heart valves and E12.5 limb buds. We identified context-dependent and context–independent SOX9 interacting regions throughout the genome. Analysis of context-independent SOX9 binding suggests an extensive role for SOX9 across tissues in regulating proliferation-associated genes including key components of the AP-1 complex. Integrative analysis of tissue-specific SOX9 interacting regions and gene expression profiles on Sox9-deficient heart valves demonstrated that SOX9 controls the expression of several transcription factors with previously identified roles in heart valve development, including Twist1, Sox4, Mecom/Evi1 and Pitx2. Together, our data identifies SOX9 coordinated transcriptional hierarchies that control cell proliferation and differentiation during valve formation.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3