Regulation of the Haemolymph in the Saline Water Mosquito Larva Aedes Detritus Edw

Author:

BEADLE L. C.1

Affiliation:

1. Laboratoire de Biologie, Faculté des Sciences Alger, and the Department of Zoology, King's College, Newcastle-on-Tyne

Abstract

1. The larvae of the mosquito Aedes detritus have been reported only from definitely saline waters. They have been found in water of salinity equivalent to c 10 % NaCl. 2. In the laboratory they were acclimatized with ease to distilled water, sea water (7 % Nacl), 3.5 % NaCl, and glycerol (3.5 % NaCl). They also show considerable resistance to N/20 NaOH, but less to N/20 KOH and N/50 HCl. They are unable to live permanently in solutions of the chlorides of potassium, calcium and magnesium of osmotic pressure equivalent to 3.5 % NaCl. 3. In sea water of varying salinity they can regulate both the total osmotic pressure and chloride content of the haemolymph. A rise from nil to 6.0 % NaCl in the osmotic pressure of the medium is reflected in an increase of from c. 0.8 % to 1.4 % NaCl in that of the haemolymph. 4. In hypotonic solutions and distilled water much chloride is lost, but this is compensated by an increase in the non-chloride fraction. In hypertonic sea water the rise in osmotic pressure is due to increase in the chloride fraction, the non-chloride fraction remaining constant. 5. From this and from experiments with non-electrolytes it is concluded that the larva is permeable to salts and to molecules as large as glycerol, and that the regulatory mechanism in hypertonic saline is concerned with compensation rather for penetration of salts than for loss of water by osmosis. 6. Ligature experiments suggest that this mechanism is the excretion of salt by the Malpighian tubes, but further proof is required. 7. Salt exchange with the environment takes place via the gut, the body surface being impermeable to salts and water. 8. The larvae are able to concentrate chloride from hypotonic solutions but not as effectively as fresh-water species and only when the chloride content of the medium is a little below that of the haemolymph. 9. The anal gills, as in all salt-water species, are very small and appear to be impermeable to salts and water. It is therefore concluded that they are not the seat of the chloride-absorbing mechanism. 10. The osmotic pressure of the haemolymph is trebled by treatment with glycerol (3.5 % NaCl), which must be mainly the result of penetration of glycerol. The larva will however live normally in this, and an important factor in the resistance to abnormal media is therefore the adaptability of the tissues to changes in the concentration and composition of the haemolymph. 11. The increase in the osmotic pressure of the haemolymph induced by hypertonic sea water and glycerol does not alter the amount of fluid in the tracheoles. This is discussed in relation to the possible mechanism for the absorption of the tracheole fluid.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3