Cyclic AMP waves during aggregation of Dictyostelium amoebae

Author:

Tyson J.J.1,Murray J.D.1

Affiliation:

1. Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg 24061.

Abstract

During the aggregation phase of their life cycle, Dictyostelium discoideum amoebae communicate with each other by traveling waves of cyclic AMP. These waves are generated by an interplay between random diffusion of cyclic AMP in the extracellular milieu and the signal-reception/signal/relaying capabilities of individual amoebae. Kinetic properties of the enzymes, transport proteins and cell-surface receptor proteins involved in the cyclic AMP signaling system have been painstakingly worked out over the past fifteen years in many laboratories. Recently Martiel & Goldbeter (1987) incorporated this biochemical information into a unified mathematical model of communication among Dictyostelium amoebae. Numerical simulations of the mathematical model, carried out by Tyson et al. (1989), agree in quantitative detail with experimental observations of cyclic AMP traveling waves in Dictyostelium cultures. Such mathematical modeling and numerical experimentation provide a necessary link between detailed studies of the molecular control mechanism and experimental observations of the intact developmental system.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cellular Ethological Dynamics in Diorama Environments;Journal of the Physical Society of Japan;2023-12-15

2. Spiral-wave dynamics in excitable media: Insights from dynamic mode decomposition;Communications in Nonlinear Science and Numerical Simulation;2023-11

3. Controlling periodic long-range signalling to drive a morphogenetic transition;eLife;2023-03-01

4. Multi-scale organization in communicating active matter;Nature Communications;2022-11-07

5. Hydrodynamics of chiral squirmers;Physical Review E;2022-02-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3