Affiliation:
1. Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg 24061.
Abstract
During the aggregation phase of their life cycle, Dictyostelium discoideum amoebae communicate with each other by traveling waves of cyclic AMP. These waves are generated by an interplay between random diffusion of cyclic AMP in the extracellular milieu and the signal-reception/signal/relaying capabilities of individual amoebae. Kinetic properties of the enzymes, transport proteins and cell-surface receptor proteins involved in the cyclic AMP signaling system have been painstakingly worked out over the past fifteen years in many laboratories. Recently Martiel & Goldbeter (1987) incorporated this biochemical information into a unified mathematical model of communication among Dictyostelium amoebae. Numerical simulations of the mathematical model, carried out by Tyson et al. (1989), agree in quantitative detail with experimental observations of cyclic AMP traveling waves in Dictyostelium cultures. Such mathematical modeling and numerical experimentation provide a necessary link between detailed studies of the molecular control mechanism and experimental observations of the intact developmental system.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献