The mouse homeodomain protein Phox2 regulates Ncam promoter activity in concert with Cux/CDP and is a putative determinant of neurotransmitter phenotype

Author:

Valarche I.1,Tissier-Seta J.P.1,Hirsch M.R.1,Martinez S.1,Goridis C.1,Brunet J.F.1

Affiliation:

1. Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, France.

Abstract

Transcriptional regulation of the gene encoding the cell adhesion receptor NCAM (neural cell adhesion molecule), a putative effector molecule of a variety of morphogenetic events, is likely to involve important regulators of morphogenesis. Here we identify two mouse homeodomain proteins that bind to an upstream regulatory element in the Ncam promoter: Cux, related to Drosophila cut and human CDP, and Phox2, a novel protein with a homeodomain related to that of the Drosophila paired gene. In transient transfection experiments, Cux was found to be a strong inhibitor of Ncam promoter activity, and this inhibition could be relieved by simultaneously overexpressing Phox2. These results suggest that the Ncam gene might be a direct target of homeodomain proteins and provide a striking example of regulatory cross-talk between homeodomain proteins of different classes. Whereas the expression pattern of Cux/CDP includes many NCAM-negative sites, Phox2 expression was restricted to cells also expressing Ncam or their progenitors. The localisation data thus strongly reinforce the notion that Phox2 plays a role in transcriptional activation of Ncam in Phox2-positive cell types. In the peripheral nervous system, Phox2 was strongly expressed in all ganglia of the autonomic nervous system and more weakly in some cranial sensory ganglia, but not in the sensory ganglia of the trunk. Phox2 transcripts were detected in the primordia of sympathetic ganglia as soon as they form. Phox2 expression in the brain was confined to spatially restricted domains in the hindbrain, which correspond to the noradrenergic and adrenergic nuclei once they are identifiable. All Phox2-expressing components of the peripheral nervous system are at least transiently adrenergic or noradrenergic. In the developing brain, Phox2 was expressed at all known locations of (nor)adrenergic neurones and of their precursors. These results suggest that Phox2, in addition to regulating the NCAM gene, may be part of the regulatory cascade that controls the differentiation of neurons towards this neurotransmitter phenotype.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3