Affiliation:
1. Department of Zoology, University of Cambridge, UK.
Abstract
We have examined the role of innervation in directing embryonic myogenesis, using a mutant (prospero), which delays the pioneering of peripheral motor nerves of the Drosophila embryo. In the absence of motor nerves, myoblasts fuse normally to form syncytial myotubes, myotubes form normal attachments to the epidermis, and a larval musculature comparable to the wild-type pattern is generated and maintained. Likewise, the twist-expressing myoblasts that prefigure the adult musculature segregate normally in the absence of motor nerves, migrate to their final embryonic positions and continue to express twist until the end of embryonic development. In the absence of motor nerves, myotubes uncouple at the correct developmental stage to form single cells. Subsequently, uninnervated myotubes develop the mature electrical and contractile properties of larval muscles with a time course indistinguishable from normally innervated myotubes. We conclude that innervation plays no role in the patterning, morphogenesis, maintenance or physiological development of the somatic muscles in the Drosophila embryo.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献