XASH-3, a novel Xenopus achaete-scute homolog, provides an early marker of planar neural induction and position along the mediolateral axis of the neural plate

Author:

Zimmerman K.1,Shih J.1,Bars J.1,Collazo A.1,Anderson D.J.1

Affiliation:

1. Howard Hughes Medical Institute, California Institute of Technology, Pasadena 91125.

Abstract

We have isolated a novel Xenopus homolog of the Drosophila achaete-scute genes, called XASH-3. XASH-3 expression is neural specific and is detected as early as stage 11 1/2, making it one of the earliest markers of neural induction so far described. Moreover, XASH-3 expression within the neural plate is regionally restricted. Transverse bands of XASH-3 mRNA mark discrete positions along the anteroposterior axis, while longitudinal bands mark a discrete position along the mediolateral axis. This latter site of XASH-3 expression appears to demarcate the prospective sulcus limitans, a boundary zone that later separates the functionally distinct dorsal (alar) and ventral (basal) regions of the spinal cord. In sandwich explants lacking any underlying mesoderm, XASH-3 is expressed in longitudinal stripes located lateral to the midline. This provides the first indication that planar or midline-derived inductive signals are sufficient to establish at least some aspects of positional identity along the mediolateral axis of the neural plate. By contrast, the transverse stripes of XASH-3 expression are not detected, suggesting that this aspect of anteroposterior neural pattern is lost or delayed in the absence of vertically passed signals. The restricted mediolateral expression of XASH-3 suggests that mediolateral patterning of the neural plate is an early event, and that this regionalization can be achieved in the absence of inducing signals derived from underlying mesoderm.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3