Intrinsic expression of transcortin in neural cells of the mouse brain: a histochemical and molecular study

Author:

Sivukhina Elena1,Helbling Jean-Christophe2,Minni Amandine M.2,Schäfer Hendrick H.1,Pallet Veronique2,Jirikowski Gustav F.1,Moisan Marie-Pierre2

Affiliation:

1. Institute of Anatomy II, Friedrich-Schiller University, Germany;

2. INRA, NutriNeuro; University Bordeaux, France

Abstract

Summary Corticosteroid binding globulin (CBG, transcortin) has been shown to be expressed in the brain of rat and human species. In this study we examined the CBG brain expression and cDNA structure in mice, comparing wild-type (Cbg+/+) and Cbg knockout mice (Cbg-/-, obtained by genetic disruption of the SerpinA6 alias Cbg gene). We used double immunofluorescence labelling with specific neuronal and glial markers to analyze the cellular localization of CBG in various regions of the mouse brain. In wild-type (Cbg+/+) mice we found CBG immunoreactivity in neuronal perikarya of the magnocellular hypothalamic nuclei, amygdala, hippocampus, cerebral cortex, cerebellum and pituitary. A portion of glial cells (astrocytes, oligodendrocytes) contained CBG immunoreactivity, including some of the ependymal cells and choroid plexus cells. No CBG immunoreactivity was detected in Cbg-/- brain tissues. We showed by RT-PCR that the full-length Cbg mRNA is present in those regions, indicating an intrinsic expression of the steroid-binding globulin. Furthermore, we found by sequencing analysis that Cbg cDNA obtained from the mouse hypothalamus was homologous to Cbg cDNA obtained from the liver. Finally, we have evaluated the relative levels of CBG expression by quantitative PCR in various brain regions and in the liver. We found that brain levels of Cbg mRNA are low compared to the liver but significantly higher than in CBG-deficient mice. Although derived from the same gene than liver CBG, brain CBG protein may play a specific or complementary role that requires the production and analysis of brain-specific Cbg knockout models.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3