The distinct wiring between cell cycle regulation and the widely conserved Morphogenesis-Related (MOR) pathway in the fungus Ustilago maydis determines the morphological outcome

Author:

Sartorel Elodie,Pérez-Martín José

Abstract

The MOR (Morphogenesis-related NDR kinase) pathway regulates morphogenesis in fungi. In spite of the high conservation of its components, impairing their functions results in highly divergent cellular responses depending on the fungal species. The reasons for such differences are unclear. Here we propose that the species-specific connections between the cell cycle regulation and the MOR pathway could be in part responsible for these divergences. We based our conclusion on the characterization of the MOR pathway in the fungus Ustilago maydis. Each gene that encodes proteins of this pathway in U. maydis was deleted. All mutants exhibited a constitutive hyperpolarized growth contrasting with the loss of polarity observed in other fungi. Using a conditional allele of the central NDR kinase Ukc1, we found that impairing MOR function resulted in an elongated G2 phase. This cell cycle delay appears to be the consequence of an increase in Cdk1 inhibitory phosphorylation. Strikingly, abrogation of the inhibitory Cdk1 phosphorylation prevents the hyperpolarized growth associated with MOR pathway depletion. We found that enlarged G2 phase resulted in higher levels of expression of crk1, a conserved kinase that promotes polar growth in U. maydis. Deletion of crk1 also abolished the dramatic activation of polar growth in cells lacking MOR pathway. Taken together, our results suggest that Cdk1 inhibitory phosphorylation may act as an integrator of signaling cascades regulating fungal morphogenesis and that the distinct morphological response observed in U. maydis upon impairment of the MOR pathway could be due to a cell cycle deregulation.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3