Netrin 1 contributes to vascular remodeling in the subventricular zone and promotes progenitor emigration after demyelination

Author:

Cayre Myriam12,Courtès Sandrine12,Martineau Fanny12,Giordano Marilyn12,Arnaud Karen12,Zamaron Amandine12,Durbec Pascale12

Affiliation:

1. Aix-Marseille Université, IBDM-UMR7288, 13288 Marseille, France.

2. CNRS, IBDM-UMR7288, 13288 Marseille, France.

Abstract

Neural stem cells are maintained in the adult brain, sustaining structural and functional plasticity and to some extent participating in brain repair. A thorough understanding of the mechanisms and factors involved in endogenous stem/progenitor cell mobilization is a major challenge in the promotion of spontaneous brain repair. The main neural stem cell niche in the adult brain is the subventricular zone (SVZ). Following demyelination insults, SVZ-derived progenitors act in concert with oligodendrocyte precursors to repopulate the lesion and replace lost oligodendrocytes. Here, we showed robust vascular reactivity within the SVZ after focal demyelination of the corpus callosum in adult mice, together with a remarkable physical association between these vessels and neural progenitors exiting from their niche. Endogenous progenitor cell recruitment towards the lesion was significantly reduced by inhibiting post-lesional angiogenesis in the SVZ using anti-VEGF blocking antibody injections, suggesting a facilitating role of blood vessels for progenitor cell migration towards the lesion. We identified netrin 1 (NTN1) as a key factor upregulated within the SVZ after demyelination and involved in local angiogenesis and progenitor cell migration. Blocking NTN1 expression using a neutralizing antibody inhibited both lesion-induced vascular reactivity and progenitor cell recruitment at the lesion site. We propose a model in which SVZ progenitors respond to a demyelination lesion by NTN1 secretion that both directly promotes cell emigration and contributes to local angiogenesis, which in turn indirectly facilitates progenitor cell emigration from the niche.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3