Role of membrane phosphotyrosine proteins in human spermatozoal function

Author:

Naz R.K.1,Ahmad K.1,Kumar R.1

Affiliation:

1. Department of Obstetrics and Gynecology, Albert Einstein College of Medicine, Bronx, NY 10461.

Abstract

The monoclonal anti-phosphotyrosine antibody (PTA) recognized proteins related to relative molecular mass regions of 94,000 +/− 3000 and 46,000 +/− 3000 Mr on Western blots of detergent-solubilized non-capacitated human sperm extract (HSE). The pattern of phosphorylation at tyrosine residues depended upon the physiological state of the sperm cells. At least six protein bands corresponding to four molecular regions of 94,000 +/− 3000, 46,000 +/− 3000, 25,000 +/− 7000 and 12,000 +/− 2000 Mr, respectively, were labeled with 32P when human sperm were capacitated in vitro; the proteins belonging to the former three regions were phosphotyrosine proteins as they were precipitable by PTA. In vitro kinase assay performed directly on HSE indicated autophosphorylation of proteins of the same four molecular regions, with the capacitated sperm preparations having 30% higher 32P incorporation into 94,000 +/− 3000 Mr proteins and 17% less incorporation into 12,000 +/− 2000 Mr proteins as compared to the non-capacitated sperm preparations. Both of these protein regions were also autophosphorylated at tyrosine residues when immunoprecipitated phosphotyrosine proteins were used for the kinase assay. Phosphorylation of tyrosine residues of 94,000 +/− 3000 Mr proteins was further stimulated by 1.38- to 1.46-fold in response to exposure to zona pellucida proteins, namely the porcine ZP3 and human zona proteins (HZP); the HZP induced the highest response. Immunofluorescence observations on fixed human sperm demonstrated that capacitation as well as exposure to zona proteins increased the degree of tyrosine-specific fluorescence per sperm cell as well as the number of sperm cells that showed fluorescence at the acrosomal region of the spermhead.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3