Nitric oxide, an endogenous regulator of Dictyostelium discoideum differentiation

Author:

Tao Y.P.1,Misko T.P.1,Howlett A.C.1,Klein C.1

Affiliation:

1. Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, MO 63104, USA.

Abstract

We have previously demonstrated that nitric oxide (NO)-generating compounds inhibit D. discoideum differentiation by preventing the initiation of cAMP pulses (Tao, Y., Howlett, A. and Klein, C. (1996) Cell. Signal. 8, 37–43). In the present study, we demonstrate that cells produce NO at a relatively constant rate during the initial phase of their developmental cycle. The addition of oxyhemoglobin, an NO scavenger, stimulates cell aggregation, suggesting that NO has a negative effect on the development of aggregation competence. Starvation of cells in the presence of glucose, which has been shown to prevent the initiation of cAMP pulses (Darmon, M. and Klein, C. (1978) Dev. Biol. 63, 377–389), results in an increased production of NO. The inhibition of cell aggregation by glucose treatment can be reversed by oxyhemoglobin. These findings indicate that NO is a signaling molecule for D. discoideum cells and that physiological or environmental conditions that enhance external NO levels will delay the initiation of cAMP pulses, which are essential for cell differentiation.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3