Infection of the germ line by retroviral particles produced in the follicle cells: a possible mechanism for the mobilization of the gypsy retroelement of Drosophila

Author:

Song S.U.1,Kurkulos M.1,Boeke J.D.1,Corces V.G.1

Affiliation:

1. Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.

Abstract

The gypsy retroelement of Drosophila moves at high frequency in the germ line of the progeny of females carrying a mutation in the flamenco (flam) gene. This high rate of de novo insertion correlates with elevated accumulation of full-length gypsy RNA in the ovaries of these females, as well as the presence of an env-specific RNA. We have prepared monoclonal antibodies against the gypsy Pol and Env products and found that these proteins are expressed in the ovaries of flam females and processed in the manner characteristic of vertebrate retroviruses. The Pol proteins are expressed in both follicle and nurse cells, but they do not accumulate at detectable levels in the oocyte. The Env proteins are expressed exclusively in the follicle cells starting at stage 9 of oogenesis, where they accumulate in the secretory apparatus of the endoplasmic reticulum. They then migrate to the inner side of the cytoplasmic membrane where they assemble into viral particles. These particles can be observed in the perivitelline space starting at stage 10 by immunoelectron microscopy using anti-Env antibodies. We propose a model to explain flamenco-mediated induction of gypsy mobilization that involves the synthesis of gypsy viral particles in the follicle cells, from where they leave and infect the oocyte, thus explaining gypsy insertion into the germ line of the subsequent generation.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3