The development of the posterior body in zebrafish

Author:

Kanki J.P.1,Ho R.K.1

Affiliation:

1. Department of Molecular Biology, Princeton University, NJ 08544, USA. jkanki@watson.princeton.edu

Abstract

In order to understand the developmental mechanisms of posterior body formation in the zebrafish, a fate map of the zebrafish tailbud was generated along with a detailed analysis of tailbud cell movements. The fate map of the zebrafish tailbud shows that it contains tissue-restricted domains and is not a homogeneous blastema. Furthermore, time-lapse analysis shows that some cell movements and behaviors in the tailbud are similar to those seen during gastrulation, while others are unique to the posterior body. The extension of axial mesoderm and the continuation of ingression throughout zebrafish tail development suggests the continuation of processes initiated during gastrulation. Unique properties of zebrafish posterior body development include the bilateral distribution of tailbud cell progeny and the exhibition of different forms of ingression within specific tailbud domains. The ingression of cells in the anterior tailbud only gives rise to paraxial mesoderm, at the exclusion of axial mesoderm. Cells of the posterior tailbud undergo subduction, a novel form of ingression resulting in the restriction of this tailbud domain to paraxial mesodermal fates. The intermixing of spinal cord and muscle precursor cells, as well as evidence for pluripotent cells within the tailbud, suggest that complex inductive mechanisms accompany these cell movements throughout tail elongation. Rates of cell proliferation in the tailbud were examined and found to be relatively low at the tip of the tail indicating that tail elongation is not due to growth at its posterior end. However, higher rates of cell proliferation in the dorsomedial region of the tail may contribute to the preferential posterior movement of cells in this tailbud region and to the general extension of the tail. Understanding the cellular movements, cell fates and gene expression patterns in the tailbud will help to determine the nature of this important aspect of vertebrate development.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3