The bicoid-related homeoprotein Ptx1 defines the most anterior domain of the embryo and differentiates posterior from anterior lateral mesoderm

Author:

Lanctot C.1,Lamolet B.1,Drouin J.1

Affiliation:

1. Laboratoire de genetique moleculaire, Institut de recherches cliniques de Montreal, Quebec, Canada.

Abstract

Ptx1 is a member of the small bicoid family of homeobox-containing genes; it was isolated as a tissue-restricted transcription factor of the pro-opiomelanocortin gene. Its expression during mouse and chick embryogenesis was determined by in situ hybridization in order to delineate its putative role in development. In the head, Ptx1 expression is first detected in the ectoderm-derived stomodeal epithelium at E8.0. Initially, expression is only present in the stomodeum and in a few cells of the rostroventral foregut endoderm. A day later, Ptx1 mRNA is detected in the epithelium and in a streak of mesenchyme of the first branchial arch, but not in other arches. Ptx1 expression is maintained in all derivatives of these structures, including the epithelia of the tongue, palate, teeth and olfactory system, and in Rathke's pouch. Expression of Ptx1 in craniofacial structures is strikingly complementary to the pattern of goosecoid expression. In addition, Ptx1 is expressed early (E6.8) in posterior and extraembryonic mesoderm, and in structures that derive from these. The restriction of expression to the posterior lateral plate is later evidenced by exclusive labelling of the hindlimb but not forelimb mesenchyme. In the anterior domain of expression, the stomodeum was shown by fate mapping to derive from the anterior neural ridge (ANR) which represents the most anterior domain of the embryo. The concordance between these fate maps and the stomodeal pattern of Ptx1 expression supports the hypothesis that Ptx1 defines a stomodeal ectomere, which lies anteriorly to the neuromeres that have been suggested to constitute units of a segmented plan directing head formation.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3