Role of Dlx-1 and Dlx-2 genes in patterning of the murine dentition

Author:

Thomas B.L.1,Tucker A.S.1,Qui M.1,Ferguson C.A.1,Hardcastle Z.1,Rubenstein J.L.1,Sharpe P.T.1

Affiliation:

1. Department of Craniofacial Development, Guy's Hospital, London, UK.

Abstract

The molecular events of odontogenic induction are beginning to be elucidated, but until now nothing was known about the molecular basis of the patterning of the dentition. A role for Dlx-1 and Dlx-2 genes in patterning of the dentition has been proposed with the genes envisaged as participating in an ‘odontogenic homeobox gene code’ by specifying molar development. This proposal was based on the restricted expression of the genes in molar ectomesenchyme derived from cranial neural crest cells prior to tooth initiation. Mice with targeted null mutations of both Dlx-1 and Dlx-2 homeobox genes do not develop maxillary molar teeth but incisors and mandibular molars are normal. We have carried out heterologous recombinations between mutant and wild-type maxillary epithelium and mesenchyme and show that the ectomesenchyme underlying the maxillary molar epithelium has lost its odontogenic potential. Using molecular markers of branchial arch neural crest (Barx1) and commitment to chondrogenic differentiation (Sox9), we show that this population alters its fate from odontogenic to become chondrogenic. These results provide evidence that a subpopulation of cranial neural crest is specified as odontogenic by Dlx-1 and Dlx-2 genes. Loss of function of these genes results in reprogramming of this population of ectomesenchyme cells into chondrocytes. This is the first indication that the development of different shaped teeth at different positions in the jaws is determined by independent genetic pathways.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 162 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3