HSP70-2 is required for desynapsis of synaptonemal complexes during meiotic prophase in juvenile and adult mouse spermatocytes

Author:

Dix D.J.1,Allen J.W.1,Collins B.W.1,Poorman-Allen P.1,Mori C.1,Blizard D.R.1,Brown P.R.1,Goulding E.H.1,Strong B.D.1,Eddy E.M.1

Affiliation:

1. Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.

Abstract

Spermatogenic cells synthesize a unique 70-kDa heat shock protein (HSP70-2) during prophase of meiosis I, and targeted disruption of the Hsp70-2 gene has shown that this protein is required for spermatogenic cell differentiation in adult mice. HSP70-2 is associated with synaptonemal complexes formed between paired homologous chromosomes during meiotic prophase. The present study focuses on the nearly synchronous first wave of spermatogenesis in 12- to 28-day old juvenile mice to determine more precisely when HSP70-2 is required and what meiotic processes are affected by its absence. Spermatogenesis in homozygous mutant mice (Hsp70-2[−/−]) proceeded normally until day 15 when increasing numbers of pachytene spermatocytes became apoptotic and differentiation of cells beyond the pachytene stage began to falter. Synaptonemal complexes assembled in Hsp70-2(−/−) mice and spermatocytes developed through the final pachytene substage. However, synaptonemal complexes failed to desynapse and normal diplotene spermatocytes were not observed. Metaphase spermatocytes were not seen in tissue sections from testes of Hsp70-2(−/−) mice, and expression of mRNAs and antigens characteristic of late pachytene spermatocytes (e.g., cyclin A1) and development of spermatids did not occur. Thus, HSP70-2 is required for synaptonemal complex desynapsis, and its absence severely impairs the transition of spermatogenic cells through the late meiotic stages and results in apoptosis beginning with the first wave of germ cell development in juvenile mice.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3