Enhanced cardiogenesis in embryonic stem cells overexpressing the GATA-4 transcription factor

Author:

Grepin C.1,Nemer G.1,Nemer M.1

Affiliation:

1. Laboratoire de developpement et differenciation cardiaques, Institut de recherches cliniques de Montreal, Universite de Montreal, Quebec, Canada.

Abstract

GATA-4 is a cardiac-specific member of the GATA family of zinc finger transcription factors. During embryogenesis, GATA-4 expression is detected very early in the cardiogenic area and persists later in the developing heart. Studies have shown that GATA-4 is a potent transcriptional activator of several cardiac muscle-specific genes and a key regulator of the cardiomyocyte gene program. Consistent with a role for GATA-4 in cardiomyocyte formation, inhibition of GATA-4 expression by antisense transcripts interferes with expression of cardiac muscle genes and blocks development of beating cardiomyocytes in P19 embryonic stem cells. In order to better define the function of GATA-4 in cardiogenesis, we have carried out molecular analysis of early stages of cardiomyocyte differentiation in GATA-4-deficient P19 cell lines and in P19 cells stably overexpressing GATA-4. The results indicate that GATA-4 is not required for either endodermal or mesodermal commitment or for initiation of the cardiac pathway. However, in the absence of GATA-4, differentiation is blocked at the precardiac (cardioblasts) stage and cells are lost through extensive apoptosis. In contrast, ectopic expression of GATA-4 in P19 cells accelerates cardiogenesis and markedly increases (over 10-fold) the number of terminally differentiated beating cardiomyocytes following cell aggregation. Together, these findings suggest that, in addition to its role in activation of the cardiac genetic program, GATA-4 may be the nuclear target of inductive and/or survival factors for precardiac cells.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference56 articles.

1. Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation.;Arber;Cell,1994

2. Genomic structure, chromosomal location, and evolution of the mouse Hox 8 gene.;Bell;Genomics,1993

3. Induction of yolk sac endoderm on the surface of GATA-4 deficient embryoid bodies by retinoic acid and dbcAMP.;Bielinska;Mol. Biol. Cell,1995

4. Estrogen-induced apopotosis by inhibition of the erythroid transcription factor GATA-1.;Blobel;Mol. Cell. Biol,1996

5. Gastrulation in the mouse: the role of the homeobox gene goosecoid.;Blum;Cell,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3