Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1

Author:

Wilson P.A.1,Lagna G.1,Suzuki A.1,Hemmati-Brivanlou A.1

Affiliation:

1. Department of Molecular Embryology, The Rockefeller University, New York, NY 10021, USA.

Abstract

Morphogens are thought to establish pattern in early embryos by specifying several cell fates along a gradient of concentration; a well-studied example is the Drosophila protein decapentaplegic (DPP) acting in the wing disc. Recent work has established that bone morphogenetic protein 4 (BMP4), the vertebrate homologue of DPP, controls the fundamental choice between neural and epidermal fates in the vertebrate ectoderm, under the control of antagonists secreted by the organizer region of the mesoderm. We now show that BMP4 can act as a morphogen, evoking distinct responses in Xenopus ectodermal cells at high and low concentrations, in a pattern consistent with the positions of the corresponding cell types in the embryo. Moreover, this complex cellular response to extracellular BMP4 concentration does not require subsequent cell-cell communication and is thus direct, as required of a classical morphogen. We also show that the same series of cell types--epidermis, cement gland and neural tissue--can be produced by progressively inhibiting endogenous BMP signaling with specific antagonists, including the organizer factor noggin. Finally, expression of increasing doses of the signal transduction molecule Smad1 accurately reproduces the response to BMP4 protein. Since Smads have been shown to act in the nucleus, this finding implies a direct translation of extracellular morphogen concentration into transcription factor activity. We propose that a graded distribution of BMP activity controls the specification of several cell types in the gastrula ectoderm and that this extracellular gradient acts by establishing an intracellular and then nuclear gradient of Smad activity.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3