A forkhead gene related to HNF-3beta is required for gastrulation and axis formation in the ascidian embryo

Author:

Olsen C.L.1,Jeffery W.R.1

Affiliation:

1. Graduate Program in Cell and Developmental Biology, University of California, Davis 95616, USA.

Abstract

We have isolated a member of the HNF-3/forkhead gene family in ascidians as a means to determine the role of winged-helix genes in chordate development. The MocuFH1 gene, isolated from a Molgula oculata cDNA library, exhibits a forkhead DNA-binding domain most similar to zebrafish axial and rodent HNF-3beta. MocuFH1 is a single copy gene but there is at least one other related forkhead gene in the M. oculata genome. The MocuFH1 gene is expressed in the presumptive endoderm, mesenchyme and notochord cells beginning during the late cleavage stages. During gastrulation, MocuFH1 expression occurs in the prospective endoderm cells, which invaginate at the vegetal pole, and in the presumptive notochord and mesenchyme cells, which involute over the anterior and lateral lips of the blastopore, respectively. However, this gene is not expressed in the presumptive muscle cells, which involute over the posterior lip of the blastopore. MocuFH1 expression continues in the same cell lineages during neurulation and axis formation, however, during the tailbud stage, MocuFH1 is also expressed in ventral cells of the brain and spinal cord. The functional role of the MocuFH1 gene was studied using antisense oligodeoxynucleotides (ODNs), which transiently reduce MocuFH1 transcript levels during gastrulation. Embryos treated with antisense ODNs cleave normally and initiate gastrulation. However, gastrulation is incomplete, some of the endoderm and notochord cells do not enter the embryo and undergo subsequent movements, and axis formation is abnormal. In contrast, the prospective muscle cells, which do not express MocuFH1, undergo involution and later express muscle actin and acetylcholinesterase, markers of muscle cell differentiation. The results suggest that MocuFH1 is required for morphogenetic movements of the endoderm and notochord precursor cells during gastrulation and axis formation. The effects of inhibiting MocuFH1 expression on embryonic axis formation in ascidians are similar to those reported for knockout mutations of HNF-3beta in the mouse, suggesting that HNF-3/forkhead genes have an ancient and fundamental role in organizing the body plan in chordates.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3