Analysis of the mechanism(s) of metaphase I arrest in strain LT mouse oocytes: participation of MOS

Author:

Hirao Y.1,Eppig J.J.1

Affiliation:

1. The Jackson Laboratory, Bar Harbor, ME 04609, USA.

Abstract

Oocytes of almost all vertebrates become arrested at metaphase II to await fertilization. Arrest is achieved with the participation of a protein complex known as cytostatic factor (CSF) that stabilizes histone H1 kinase activity. MOS and mitogen-activated protein kinase (MAPK) are important components of CSF. Strain LT/Sv mice, and strains related to LT/Sv, produce a high percentage of atypical oocytes that are arrested at metaphase I when normal oocytes have progressed to metaphase II. The potential role of MOS in metaphase I arrest was investigated using strain LT/Sv and LT-related recombinant inbred strains, LTXBO and CX8-4. MOS and MAPK are produced and functional in maturing LT oocytes. Two experimental paradigms were used to reduce or delete MOS in LT oocytes and assess effects on metaphase I arrest. First, sense and antisense Mos oligonucleotides were microinjected into metaphase I-arrested oocytes. Antisense, but not sense, Mos oligonucleotides promoted the activation of metaphase I-arrested oocytes. Second, mice carrying a Mos null mutation were crossed with LT mice, the null mutation was backcrossed three times to LT mice, and Mos(+/−) N3 mice were intercrossed to produce Mos(−/−), Mos(+/−) and Mos(+/+) N3F1 mice. Oocytes of all three Mos genotypes of N3F1 mice sustained meiotic arrest for 17 hours indicating that metaphase I arrest is not initiated by a MOS-dependent mechanism. However, unlike Mos(+/+) and Mos(+/−) CX8-4 N3F1 oocytes, metaphase I arrest of Mos(−/−) CX8-4 N3F1 oocytes was not sustained after 17 hours and became reversed gradually. These results, like the antisense Mos oligonucleotide microinjection experiments, suggest that MOS participates in sustaining metaphase I arrest in LT oocytes.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3