Fgfr2 and osteopontin domains in the developing skull vault are mutually exclusive and can be altered by locally applied FGF2

Author:

Iseki S.1,Wilkie A.O.1,Heath J.K.1,Ishimaru T.1,Eto K.1,Morriss-Kay G.M.1

Affiliation:

1. Department of Human Anatomy, Oxford, UK.

Abstract

Mutations in the human fibroblast growth factor receptor type 2 (FGFR2) gene cause craniosynostosis, particularly affecting the coronal suture. We show here that, in the fetal mouse skull vault, Fgfr2 transcripts are most abundant at the periphery of the membrane bones; they are mutually exclusive with those of osteopontin (an early marker of osteogenic differentiation) but coincide with sites of rapid cell proliferation. Fibroblast growth factor type 2 (FGF2) protein, which has a high affinity for the FGFR2 splice variant associated with craniosynostosis, is locally abundant; immunohistochemical detection showed it to be present at low levels in Fgfr2 expression domains and at high levels in differentiated areas. Implantation of FGF2-soaked beads onto the fetal coronal suture by ex utero surgery resulted in ectopic osteopontin expression, encircled by Fgfr2 expression, after 48 hours. We suggest that increased FGF/FGFR signalling in the developing skull, whether due to FGFR2 mutation or to ectopic FGF2, shifts the cell proliferation/differentiation balance towards differentiation by enhancing the normal paracrine down-regulation of Fgfr2.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3