A vegetally localized T-box transcription factor in Xenopus eggs specifies mesoderm and endoderm and is essential for embryonic mesoderm formation

Author:

Horb M.E.1,Thomsen G.H.1

Affiliation:

1. Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook 11794-5215, USA.

Abstract

Pattern formation in early embryogenesis is guided by maternal, localized determinants and by inductive interactions between cells. In Xenopus eggs, localized molecules have been identified and some, such as Vg1 and Xwnt-11, can specify cell fates by functioning as inducers or patterning agents. We have used differential screening to identify new Xenopus genes that regulate mesodermal patterning, and we have isolated a new member of the T-box family of transcription factors. This gene, named Brat, is expressed maternally and its transcripts are localized to the vegetal hemisphere of the egg. During early embryonic cleavage, Brat mRNA becomes partitioned primarily within vegetal cells that are fated to form the endoderm. Zygotic expression of Brat begins at the onset of gastrulation within the presumptive mesoderm of the marginal zone. Consistent with its zygotic expression pattern, Brat induces, in a dose-dependent manner, a full spectrum of mesodermal genes that mark tissues across the dorsal-ventral axis, from the blood through the Spemann organizer. Brat also induces endoderm, consistent with its vegetal localization, making Brat a good candidate for a maternal determinant of the endoderm. We tested whether endogenous Brat is required for mesoderm formation by expressing a dominant-negative, transcriptional repressor form of Brat in embryos. This treatment inhibited mesoderm formation and severely disrupted normal development, thereby establishing that Brat plays a critical role in embryonic mesoderm formation and body patterning.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3