Lithium blocks cell cycle transitions in the first cell cycles of sea urchin embryos, an effect rescued by myo-inositol

Author:

Becchetti A.1,Whitaker M.1

Affiliation:

1. Department of Physiological Sciences, The Medical School, University of Newcastle upon Tyne, UK.

Abstract

Lithium is a classical inhibitor of the phosphoinositide pathway and is teratogenic. We report the effects of lithium on the first cell cycles of sea urchin (Lytechinus pictus) embryos. Embryos cultured in 400 mM lithium chloride sea water showed marked delay to the cell cycle and a tendency to arrest prior to nuclear envelope breakdown, at metaphase and at cytokinesis. After removal of lithium, the block was reversed and embryos developed to form normal late blastulae. The lithium-induced block was also reversed by myo- but not epi-inositol, indicating that lithium was acting via the phosphoinositide pathway. Lithium microinjection before fertilization caused arrest prior to nuclear envelope breakdown at much lower concentrations (3-5 mM). Co-injection of myo-inositol prevented the block. Microinjection of 1–2 mM lithium led to block at the cleavage stage. This was also reversed by coinjection of myo-inositol. Embryos blocked by lithium microinjection proceeded rapidly into mitosis after photolysis of caged inositol 1,4,5-trisphosphate. These data demonstrate that a patent phosphoinositide signalling pathway is essential for the proper timing of cell cycle transitions and offer a possible explanation for lithium's teratogenic effects.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3