Affiliation:
1. The Rockefeller University, NYC, NY 10021-6399, USA.
Abstract
The gonad forms from cells of two lineages: the germline and soma. The somatic gonadal cells generate the various cell types within the testis or ovary that support gametogenesis. These cells derive from embryonic mesoderm, but how they are specified is unknown. Here, we describe a novel regulator of Drosophila gonadogenesis, clift, mutations in which abolish gonad formation. clift is expressed within somatic gonadal precursors as these cells first form, demonstrating that 9–12 cells are selected as somatic gonadal precursors within each of three posterior parasegments at early stages in gonadogenesis. Despite this early expression, somatic gonadal precursors are specified in the absence of clift function. However, they fail to maintain their fate and, as a consequence, germ cells do not coalesce into a gonad. In addition, using clift as a marker, we show that the anteroposterior and dorsoventral position of the somatic gonadal precursor cells within a parasegment are established by the secreted growth factor Wg, coupled with a gene regulatory hierarchy within the mesoderm. While loss of wg abolishes gonadal precursors, ectopic expression expands the population such that most cells within lateral mesoderm adopt gonadal precursor fates. Initial dorsoventral positioning of somatic gonadal precursors relies on a regulatory cascade that establishes dorsal fates within the mesoderm and is subsequently refined through negative regulation by bagpipe, a gene that specifies nearby visceral mesoderm. Thus, these studies identify essential regulators of gonadal precursor specification and differentiation and reveal novel aspects of the general mechanism whereby distinct fates are allocated within the mesoderm.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献