Linking Frizzled and Wnt signaling in Drosophila development

Author:

Tomlinson A.1,Strapps W.R.1,Heemskerk J.1

Affiliation:

1. Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA.

Abstract

Drosophila Frizzled-2 (Dfz2) has been identified as a putative fly Wingless (Wg) receptor. Although Dfz2 shows significant homology with Fz, a protein that operates in the mechanisms that establish planar polarity in Drosophila epithelia, any clear evidence for an involvement by Fz in a Wnt signaling pathway has hitherto been absent. Here we describe the planar polarity phenotypes of loss-of-function and overexpression of Fz in the developing Drosophila eye and find it almost identical to the loss-of-function or overexpression of Dishevelled (Dsh - a protein operating in Wnt second messenger systems). In addition, we show that overexpression of Shaggy (Sgg - another component of the Wnt pathway) in the eye also causes a phenotype similar to Fz and Dsh. To test further the link between planar polarity and Wnt signaling we misexpressed Wg in the developing eye and found it had a potent polarizing effect in the retinal epithelium. Since the overexpression of Fz in the developing eye gave a phenotype consistent with activating the Wnt pathway, we tested overexpression of Fz in the developing embryonic ectoderm and found that it phenocopied overexpression of Wg. To check that Fz was indeed able to activate a Wnt pathway we overexpressed it in Drosophila tissue culture cells and observed the characteristic phosphorylation of Dsh that occurs in response to Wnt signaling. Taken together our results significantly strengthen the case for Fz acting in a Wnt signaling pathway in Drosophila.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3