Reassessing embryogenesis in the Ctenophora: the inductive role of e1 micromeres in organizing ctene row formation in the ‘mosaic’ embryo, Mnemiopsis leidyi

Author:

Martindale M.Q.1,Henry J.Q.1

Affiliation:

1. Marine Biological Laboratory, Woods Hole, MA 02543, USA. m_martindale@uchicago.edu

Abstract

Ctenophores are a phylum of diploblastic marine animals displaying biradial symmetry organized along an oral-aboral axis. One of the apomorphic sets of adult structures in ctenophores are the eight external comb rows, which run along the oral-aboral axis. Comb rows consist of serial arrays of individual comb plates of cilia, which beat in a coordinated fashion for locomotory behavior. Classical cell lineage experiments using chalk particles indicated that comb rows are derived exclusively from the four e1 micromeres at the 16-cell stage. This conclusion was also supported by the fact that no ctene rows (or their underlying endodermal canals) form when all four e1 micromeres were deleted. We have used intracellular diI cell lineage tracing to determine that, in addition to e1 micromeres, the four m1 micromeres also make significant contributions to the ctene rows. Thus, e1 micromere derivatives not only generate comb plates but are required for ctene row formation by m1 derivatives. These results demonstrate that inductive interactions are an important component of early development in ctenophores and indicate that e1 micromeres influence the development of adjacent cell lineages (both m1 and endodermal lineages) during ctenophore embryogenesis. In addition, intracellular labeling has revealed that there are subtle variations in the composition of clones derived from identified embryonic blastomeres. Together these findings reveal a picture of ctenophore embryogenesis, which is in marked contrast to the former rigid ‘mosaic’ reputation of ctenophore development, and invite speculation as to the role of the cleavage program in embryonic patterning in the lower Metazoa.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3