P-cadherin is a p63 target gene with a crucial role in the developing human limb bud and hair follicle

Author:

Shimomura Yutaka1,Wajid Muhammad1,Shapiro Lawrence2,Christiano Angela M.13

Affiliation:

1. Department of Dermatology, Columbia University, New York, NY 10032, USA.

2. Departments of Biochemistry and Molecular Biophysics, and Ophthalmology,Columbia University, New York, NY 10032, USA.

3. Department of Genetics and Development, Columbia University, New York, NY 10032, USA.

Abstract

P-cadherin is a member of the classical cadherin family that forms the transmembrane core of adherens junctions. Recently, mutations in the P-cadherin gene (CDH3) have been shown to cause two inherited diseases in humans: hypotrichosis with juvenile macular dystrophy (HJMD) and ectodermal dysplasia, ectrodactyly, macular dystrophy (EEM syndrome). The common features of both diseases are sparse hair and macular dystrophy of the retina, while only EEM syndrome shows the additional finding of split hand/foot malformation (SHFM). We identified five consanguineous Pakistani families with either HJMD or EEM syndrome, and detected pathogenic mutations in the CDH3 gene of all five families. In order to define the role of P-cadherin in hair follicle and limb development, we performed expression studies on P-cadherin in the mouse embryo, and demonstrated the predominant expression of P-cadherin not only in the hair follicle placode, but also at the apical ectodermal ridge (AER) of the limb bud. Based on the evidence that mutations in the p63 gene also result in hypotrichosis and SHFM, and that the expression patterns of p63 and P-cadherin overlap in the hair follicle placode and AER, we postulated that CDH3 could be a direct transcriptional target gene of p63. We performed promoter assays and ChIP,which revealed that p63 directly interacts with two distinct regions of the CDH3 promoter. We conclude that P-cadherin is a newly defined transcriptional target gene of p63, with a crucial role in hair follicle morphogenesis as well as the AER during limb bud outgrowth in humans, whereas it is not required for either in mice.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3