Oscillatory lunatic fringe activity is crucial for segmentation of the anterior but not posterior skeleton

Author:

Shifley Emily T.1,VanHorn Kellie M.1,Perez-Balaguer Ariadna1,Franklin John D.1,Weinstein Michael1,Cole Susan E.1

Affiliation:

1. Department of Molecular Genetics, The Ohio State University, 984 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210-1292,USA.

Abstract

The Notch pathway plays multiple roles during vertebrate somitogenesis,functioning in the segmentation clock and during rostral/caudal (R/C) somite patterning. Lunatic fringe (Lfng) encodes a glycosyltransferase that modulates Notch signaling, and its expression patterns suggest roles in both of these processes. To dissect the roles played by Lfng during somitogenesis, a novel allele was established that lacks cyclic Lfngexpression within the segmentation clock, but that maintains expression during R/C somite patterning (LfngΔFCE1). In the absence of oscillatory Lfng expression, Notch activation is ubiquitous in the PSM of LfngΔFCE1 embryos. LfngΔFCE1 mice exhibit severe segmentation phenotypes in the thoracic and lumbar skeleton. However, the sacral and tail vertebrae are only minimally affected in LfngΔFCE1mice, suggesting that oscillatory Lfng expression and cyclic Notch activation are important in the segmentation of the thoracic and lumbar axial skeleton (primary body formation), but are largely dispensable for the development of sacral and tail vertebrae (secondary body formation). Furthermore, we find that the loss of cyclic Lfng has distinct effects on the expression of other clock genes during these two stages of development. Finally, we find that LfngΔFCE1 embryos undergo relatively normal R/C somite patterning, confirming that Lfngroles in the segmentation clock are distinct from its functions in somite patterning. These results suggest that the segmentation clock may employ varied regulatory mechanisms during distinct stages of anterior/posterior axis development, and uncover previously unappreciated connections between the segmentation clock, and the processes of primary and secondary body formation.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3