Erythropoietin receptor signalling is required for normal brain development

Author:

Yu Xiaobing1,Shacka John J.2,Eells Jeffrey B.3,Suarez-Quian Carlos4,Przygodzki Ronald M.5,Beleslin-Cokic Bojana1,Lin Chyuan-Sheng6,Nikodem Vera M.3,Hempstead Barbara7,Flanders Kathleen C.2,Costantini Frank6,Noguchi Constance Tom1

Affiliation:

1. Laboratory of Chemical Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA

2. Laboratory of Cell Regulation and Carcinogenesis, NCI, National Institutes of Health, Bethesda, MD 20892, USA

3. Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA

4. Department of Cell Biology, Georgetown University Medical School, Washington, DC 20007, USA

5. Armed Forces Institute of Pathology, Washington, DC 20306, USA

6. Department of Genetics and Development, Columbia University, New York, NY 10032, USA

7. Cornel Medical College, New York, NY 10021, USA

Abstract

Erythropoietin, known for its role in erythroid differentiation, has been shown to be neuroprotective during brain ischaemia in adult animal models. Although high levels of erythropoietin receptor are produced in embryonic brain, the role of erythropoietin during brain development is uncertain. We now provide evidence that erythropoietin acts to stimulate neural progenitor cells and to prevent apoptosis in the embryonic brain. Mice lacking the erythropoietin receptor exhibit severe anaemia and defective cardiac development, and die at embryonic day 13.5 (E13.5). By E12.5, in addition to apoptosis in foetal liver, endocardium and myocardium, the erythropoietin receptor null mouse shows extensive apoptosis in foetal brain. Lack of erythropoietin receptor affects brain development as early as E10.5, resulting in a reduction in the number of neural progenitor cells and increased apoptosis. Corresponding in vitro cultures of cortical cells from Epor–/– mice also exhibited decreases in neuron generation compared with normal controls and increased sensitivity to low oxygen tension with no surviving neurons in Epor–/– cortical cultures after 24 hour exposure to hypoxia. The viability of primary Epor+/+ rodent embryonic cortical neurons was further increased by erythropoietin stimulation. Exposure of these cultures to hypoxia induced erythropoietin expression and a tenfold increase in erythropoietin receptor expression, increased cell survival and decreased apoptosis. Cultures of neuronal progenitor cells also exhibited a proliferative response to erythropoietin stimulation. These data demonstrate that the neuroprotective activity of erythropoietin is observed as early as E10.5 in the developing brain, and that induction of erythropoietin and its receptor by hypoxia may contribute to selective cell survival in the brain.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 198 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3