Axial progenitors with extensive potency are localised to the mouse chordoneural hinge

Author:

Cambray Noemí1,Wilson Valerie1

Affiliation:

1. Centre for Genome Research, Kings Buildings, West Mains Road, Edinburgh EH9 3JQ, UK

Abstract

Elongation of the mouse anteroposterior axis depends on a small population of progenitors initially located in the primitive streak and later in the tail bud. Gene expression and lineage tracing have shown that there are many features common to these progenitor tissues throughout axial elongation. However, the identity and location of the progenitors is unclear. We show by lineage tracing that the descendants of 8.5 d.p.c. node and anterior primitive streak which remain in the tail bud are located in distinct territories: (1) ventral node descendants are located in the widened posterior end of the notochord; and (2) descendants of anterior streak are located in both the tail bud mesoderm, and in the posterior end of the neurectoderm. We show that cells from the posterior neurectoderm are fated to give rise to mesoderm even after posterior neuropore closure. The posterior end of the notochord, together with the ventral neurectoderm above it, is thus topologically equivalent to the chordoneural hinge region defined in Xenopus and chick. A stem cell model has been proposed for progenitors of two of the axial tissues, the myotome and spinal cord. Because it was possible that labelled cells in the tail bud represented stem cells, tail bud mesoderm and chordoneural hinge were grafted to 8.5 d.p.c. primitive streak to compare their developmental potency. This revealed that cells from the bulk of the tail bud mesoderm are disadvantaged in such heterochronic grafts from incorporating into the axis and even when they do so, they tend to contribute to short stretches of somites suggesting that tail bud mesoderm is restricted in potency. By contrast, cells from the chordoneural hinge of up to 12.5 d.p.c. embryos contribute efficiently to regions of the axis formed after grafting to 8.5 d.p.c. embryos, and also repopulate the tail bud. These cells were additionally capable of serial passage through three successive generations of embryos in culture without apparent loss of potency. This potential for self-renewal in chordoneural hinge cells strongly suggests that stem cells are located in this region.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3