her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis

Author:

Holley Scott A.11,Jülich Dörthe2,Rauch Gerd-Jörg2,Geisler Robert2,Nüsslein-Volhard Christiane2

Affiliation:

1. Present address: Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA

2. Max Planck-Institut für Entwicklungsbiologie, Tübingen, Germany

Abstract

Somite formation is thought to be regulated by an unknown oscillator mechanism that causes the cells of the presomitic mesoderm to activate and then repress the transcription of specific genes in a cyclical fashion. These oscillations create stripes/waves of gene expression that repeatedly pass through the presomitic mesoderm in a posterior-to-anterior direction. In both the mouse and the zebrafish, it has been shown that the notch pathway is required to create the stripes/waves of gene expression. However, it is not clear if the notch pathway comprises part of the oscillator mechanism or if the notch pathway simply coordinates the activity of the oscillator among neighboring cells. In the zebrafish, oscillations in the expression of a hairy-related transcription factor, her1 and the notch ligand deltaC precede somite formation. Our study focuses on how the oscillations in the expression of these two genes is affected in the mutants aei/deltaD and des/notch1, in ‘morpholino knockdowns’ of deltaC and her1 and in double ‘mutant’ combinations. This analysis indicates that these oscillations in gene expression are created by a genetic circuit comprised of the notch pathway and the notch target gene her1. We also show that a later function of the notch pathway can create a segmental pattern even in the absence of prior oscillations in her1 and deltaC expression. Supplementary data available at http://www.eb.tuebingen.mpg.de/papers/holley_dev_2002.html

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 170 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3