A changing morphogen gradient is interpreted by continuous transduction flow

Author:

Bourillot P.-Y.,Garrett N.,Gurdon J. B.1

Affiliation:

1. Wellcome/CRC Institute, Tennis Court Road, Cambridge, CB2 1QR, and Department of Zoology, University of Cambridge, UK

Abstract

In vertebrate development, most signalling factors behave as morphogens, eliciting divergent cell fates according to their concentration. We ask how cells interpret morphogen concentration as it changes during the establishment of a gradient. Using dissociated blastula cells of Xenopus exposed to activin for only 10 minutes, we have followed the phosphorylation of tagged Smad2, the principal activin transducer, from a cytoplasmic pool to the nucleus in real time. We show that a changing concentration of extracellular activin is rapidly and continuously transduced to provide a corresponding nuclear concentration of Smad2, even though gene response may be delayed for several hours. Nuclear Smad2 concentration changes up as the extracellular concentration of activin increases. We conclude that cells interpret a changing extracellular concentration by maintaining a continuous flow of activated transducer from a large cytoplasmic pool to the nucleus where it is degraded. The volume of this flow determines the steady state concentration of Smad2 in the nucleus and this is used by cells to interpret extracellular morphogen concentration.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference38 articles.

1. Armes, N. A. and Smith, J. C. (1997). The ALK-2 and ALK-4 activin receptors transduce distinct mesoderm-inducing signals during early Xenopus development but do not co-operate to establish thresholds. Development124, 3797-3804.

2. Cascio, S. and Gurdon, J. B. (1987). The initiation of new gene transcription during Xenopus gastrulation requires immediately preceding protein synthesis. Development100, 297-305.

3. Chen, X., Rubock, M. J. and Whitman, M. (1996). A transcriptional partner for MAD proteins in TGF-β signalling. Nature383, 691-696.

4. Chen, X., Weisberg, E., Fridmacher, V., Watanabe, M., Naco, G. and Whitman, M. (1997). Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature389, 85-89.

5. Clements, D., Friday, R. V. and Woodland, H. R. (1999). Mode of action of VegT in mesoderm and endoderm formation. Development126, 4903-4911.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3