Specific heparan sulfate structures involved in retinal axon targeting

Author:

Irie Atsushi1,Yates Edwin A.2,Turnbull Jeremy E.2,Holt Christine E.1

Affiliation:

1. Department of Anatomy, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK

2. Molecular Cell Biology Research Laboratories, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Abstract

Heparan sulfate (HS), a structurally diverse molecule comprising distinct sequences of sulfated disaccharide units, is abundant in the developing brain and binds to axon guidance molecules. Addition of HS to the developing Xenopus optic pathway causes severe targeting errors yet it is not known how the structural diversity of this molecule relates to its role in axon guidance. We have used an in vivo brain assay to identify the structural characteristics of HS that induce aberrant axon targeting. Inhibiting sulfation of endogenous HS with chlorate causes axons to bypass their target, the tectum, and treatment with chemically modified heparins reveals that 2-O- and 6-O-sulfate groups have potent bypass-inducing activity. Experiments with purified heparin saccharides show that bypass-inducing activity correlates with distinct structures, particularly those containing a combination of 2-O- and 6-O-sulfate groups. Taken together the results indicate that specific sequences, rather than gross structural composition, are critical for activity. In situ hybridisation revealed that HS 6-O-sulfotransferase is regionally expressed along the border of the dorsal optic tract whereas 2-O-sulfotransferase is expressed broadly. Our results demonstrate that specific HS sequences are essential for regulating retinotectal axon targeting and suggest that regionalised biosynthesis of specific HS structures is important for guiding axons into the tectum.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3