pax2.1is required for the development of thyroid follicles in zebrafish

Author:

Wendl Thomas1,Lun Klaus2,Mione Marina3,Favor Jack4,Brand Michael2,Wilson Stephen W.3,Rohr Klaus B.3

Affiliation:

1. Institute for Developmental Biology, University of Cologne, Gyrhofstrasse 17, D-50923 Köln, Germany

2. Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany

3. Department of Anatomy and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK

4. GSF-National Research Center for Environment and Health, Institute for Human Genetics, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany

Abstract

The thyroid gland is an organ primarily composed of endoderm-derived follicular cells. Although disturbed embryonic development of the thyroid gland leads to congenital hypothyroidism in humans and mammals, the underlying principles of thyroid organogenesis are largely unknown. In this study, we introduce zebrafish as a model to investigate the molecular and genetic mechanisms that control thyroid development. Marker gene expression suggests that the molecular pathways of early thyroid development are essentially conserved between fish and mammals. However during larval stages, we find both conserved and divergent features of development compared with mammals. A major difference is that in fish, we find evidence for hormone production not only in thyroid follicular cells, but also in an anterior non-follicular group of cells.We show that pax2.1 and pax8, members of the zebrafish pax2/5/8 paralogue group, are expressed in the thyroid primordium. Whereas in mice, only Pax8 has a function during thyroid development, analysis of the zebrafish pax2.1 mutant no isthmus (noi–/–) demonstrates that pax2.1 has a role comparable with mouse Pax8 in differentiation of the thyroid follicular cells. Early steps of thyroid development are normal in noi–/–, but later expression of molecular markers is lost and the formation of follicles fails. Interestingly, the anterior non-follicular site of thyroid hormone production is not affected in noi–/–. Thus, in zebrafish, some remaining thyroid hormone synthesis takes place independent of the pathway leading to thyroid follicle formation. We suggest that the noi–/– mutant serves as a new zebrafish model for hypothyroidism.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3