Inhibition of trophoblast stem cell potential in chorionic ectoderm coincides with occlusion of the ectoplacental cavity in the mouse

Author:

Uy Gary D.1,Downs Karen M.2,Gardner Richard L.1

Affiliation:

1. Mammalian Development Laboratory, University of Oxford, Department of Zoology, South Parks Road, Oxford, OX1 3PS, UK

2. Department of Anatomy, University of Wisconsin-Madison Medical School, 1300 University Avenue, Madison, WI, 53706, USA

Abstract

At the blastocyst stage of pre-implantation mouse development, close contact of polar trophectoderm with the inner cell mass (ICM) promotes proliferation of undifferentiated diploid trophoblast. However, ICM/polar trophectoderm intimacy is not maintained during post-implantation development, raising the question of how growth of undifferentiated trophoblast is controlled during this time. The search for the cellular basis of trophoblast proliferation in post-implantation development was addressed with an in vitro spatial and temporal analysis of fibroblast growth factor 4-dependent trophoblast stem cell potential. Two post-implantation derivatives of the polar trophectoderm – early-streak extra-embryonic ectoderm and late-streak chorionic ectoderm – were microdissected into fractions along their proximodistal axis and thoroughly dissociated for trophoblast stem cell culture. Results indicated that cells with trophoblast stem cell potential were distributed throughout the extra-embryonic/chorionic ectoderm, an observation that is probably attributable to non-coherent growth patterns exhibited by single extra-embryonic ectoderm cells at the onset of gastrulation. Furthermore, the frequency of cells with trophoblast stem cell potential increased steadily in extra-embryonic/chorionic ectoderm until the first somite pairs formed, decreasing thereafter in a manner independent of proximity to the allantois. Coincident with occlusion of the ectoplacental cavity via union between chorionic ectoderm and the ectoplacental cone, a decline in the frequency of mitotic chorionic ectoderm cells in vivo, and of trophoblast stem cell potential in vitro, was observed. These findings suggest that the ectoplacental cavity may participate in maintaining proliferation throughout the developing chorionic ectoderm and, thus, in supporting its stem cell potential. Together with previous observations, we discuss the possibility that fluid-filled cavities may play a general role in the development of tissues that border them.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3