SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression withLEUNIG

Author:

Franks Robert G.1,Wang Chunxin1,Levin Joshua Z.2,Liu Zhongchi1

Affiliation:

1. Department of Cell Biology and Molecular Genetics, 3236 H.J. Patterson Hall, University of Maryland, College Park, MD 20742, USA

2. Syngenta, 3054 Cornwallis Road, Research Triangle Park, NC 27709, USA

Abstract

Proper regulation of homeotic gene expression is critical for pattern formation during both animal and plant development. A negative regulatory mechanism ensures that the floral homeotic gene AGAMOUS is only expressed in the center of an Arabidopsis floral meristem to specify stamen and carpel identity and to repress further proliferation of the floral meristem. We report the genetic identification and characterization of a novel gene, SEUSS, that is required in the negative regulation of AGAMOUS. Mutations in SEUSS cause ectopic and precocious expression of AGAMOUS mRNA, leading to partial homeotic transformation of floral organs in the outer two whorls. The effects of seuss mutations are most striking when combined with mutations in LEUNIG, a previously identified repressor of AGAMOUS. More complete homeotic transformation of floral organs and a greater extent of organ loss in all floral whorls were observed in the seuss leunig double mutants. By in situ hybridization and double and triple mutant analyses, we showed that this enhanced defect was caused by an enhanced ectopic and precocious expression of AGAMOUS. Using a map-based approach, we isolated the SEUSS gene and showed that it encodes a novel protein with at least two glutamine-rich domains and a highly conserved domain that shares sequence identity with the dimerization domain of the LIM-domain-binding transcription co-regulators in animals. Based on these molecular and genetic analyses, we propose that SEUSS encodes a regulator of AGAMOUS and functions together with LEUNIG.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3