SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression withLEUNIG
Author:
Franks Robert G.1, Wang Chunxin1, Levin Joshua Z.2, Liu Zhongchi1
Affiliation:
1. Department of Cell Biology and Molecular Genetics, 3236 H.J. Patterson Hall, University of Maryland, College Park, MD 20742, USA 2. Syngenta, 3054 Cornwallis Road, Research Triangle Park, NC 27709, USA
Abstract
Proper regulation of homeotic gene expression is critical for pattern formation during both animal and plant development. A negative regulatory mechanism ensures that the floral homeotic gene AGAMOUS is only expressed in the center of an Arabidopsis floral meristem to specify stamen and carpel identity and to repress further proliferation of the floral meristem. We report the genetic identification and characterization of a novel gene, SEUSS, that is required in the negative regulation of AGAMOUS. Mutations in SEUSS cause ectopic and precocious expression of AGAMOUS mRNA, leading to partial homeotic transformation of floral organs in the outer two whorls. The effects of seuss mutations are most striking when combined with mutations in LEUNIG, a previously identified repressor of AGAMOUS. More complete homeotic transformation of floral organs and a greater extent of organ loss in all floral whorls were observed in the seuss leunig double mutants. By in situ hybridization and double and triple mutant analyses, we showed that this enhanced defect was caused by an enhanced ectopic and precocious expression of AGAMOUS. Using a map-based approach, we isolated the SEUSS gene and showed that it encodes a novel protein with at least two glutamine-rich domains and a highly conserved domain that shares sequence identity with the dimerization domain of the LIM-domain-binding transcription co-regulators in animals. Based on these molecular and genetic analyses, we propose that SEUSS encodes a regulator of AGAMOUS and functions together with LEUNIG.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Reference45 articles.
1. Agulnick, A. D., Taira, M., Breen, J. J., Tanaka, T., Dawid, I. B. and Westphal, H. (1996). Interactions of the LIM-domain-binding factor Ldb1 with LIM homeodomain proteins. Nature384, 270-272. 2. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. (1991). Current Protocols in Molecular Biology. New York: Wiley and Sons. 3. Bach, I., Carriere, C., Ostendorff, H. P., Andersen, B. and Rosenfeld, M. G. (1997). A family of LIM domain-associated cofactors confer transcriptional synergism between LIM and Otx homeodomain proteins. Genes Dev. 11, 1370-1380. 4. Bomblies, K., Dagenais, N. and Weigel, D. (1999). Redundant enhancers mediate transcriptional repression of AGAMOUS by APETALA2. Dev. Biol.216, 260-264. 5. Bowman, J. L., Smyth, D. R. and Meyerowitz, E. M. (1989). Genes directing flower development in Arabidopsis. Plant Cell1, 37-52.
Cited by
109 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|