Skeletal defects in VEGF120/120 mice reveal multiple roles for VEGF in skeletogenesis

Author:

Zelzer Elazar1,McLean William1,Ng Yin-Shan2,Fukai Naomi1,Reginato Anthony M.1,Lovejoy Stephanie2,D’Amore Patricia A.2,Olsen Bjorn R.1

Affiliation:

1. Harvard Medical School, Department of Cell Biology, 240 Longwood Avenue, Boston, MA, USA

2. Schepens Eye Research Institute, Department of Ophthalmology, Boston, MA

Abstract

Angiogenesis is an essential component of skeletal development and VEGF signaling plays an important if not pivotal role in this process. Previous attempts to examine the roles of VEGF in vivo have been largely unsuccessful because deletion of even one VEGF allele leads to embryonic lethality before skeletal development is initiated. The availability of mice expressing only the VEGF120 isoform (which do survive to term) has offered an opportunity to explore the function of VEGF during embryonic skeletal development. Our study of these mice provides new in vivo evidence for multiple important roles of VEGF in both endochondral and intramembranous bone formation, as well as some insights into isoform-specific functions. There are two key differences in vascularization of developing bones between wild-type and VEGF120/120 mice. VEGF120/120 mice have not only a delayed recruitment of blood vessels into the perichondrium but also show delayed invasion of vessels into the primary ossification center, demonstrating a significant role of VEGF at both an early and late stage of cartilage vascularization. These findings are the basis for a two-step model of VEGF-controlled vascularization of the developing skeleton, a hypothesis that is supported by the new finding that VEGF is expressed robustly in the perichondrium and surrounding tissue of cartilage templates of future bones well before blood vessels appear in these regions. We also describe new in vivo evidence for a possible role of VEGF in chondrocyte maturation, and document that VEGF has a direct role in regulating osteoblastic activity based on in vivo evidence and organ culture experiments.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3