Fgf8is required for pharyngeal arch and cardiovascular development in the mouse

Author:

Abu-Issa Radwan1,Smyth Graham2,Smoak Ida3,Yamamura Ken-ichi4,Meyers Erik N.12

Affiliation:

1. Department of Pediatrics, Neonatal Perinatal Research Institute, Duke University Medical Center, Durham, NC 27710, USA

2. Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA

3. Department of Molecular Biomedical Sciences, North Carolina State University Raleigh, NC 27606, USA

4. Institute of Molecular Embryology and Genetics, 4-24-1 Kuhonji, Kumamoto, 862-0976, Japan

Abstract

We present here an analysis of cardiovascular and pharyngeal arch development in mouse embryos hypomorphic for Fgf8. Previously, we have described the generation of Fgf8 compound heterozygous (Fgf8neo/–) embryos. Although early analysis demonstrated that some of these embryos have abnormal left-right (LR) axis specification and cardiac looping reversals, the number and type of cardiac defects present at term suggested an additional role for Fgf8 in cardiovascular development. Most Fgf8neo/– mutant embryos survive to term with abnormal cardiovascular patterning, including outflow tract, arch artery and intracardiac defects. In addition, these mutants have hypoplastic pharyngeal arches, small or absent thymus and abnormal craniofacial development. Neural crest cells (NCCs) populate the pharyngeal arches and contribute to many structures of the face, neck and cardiovascular system, suggesting that Fgf8 may be required for NCC development. Fgf8 is expressed within the developing pharyngeal arch ectoderm and endoderm during NCC migration through the arches. Analysis of NCC development in Fgf8neo/– mutant embryos demonstrates that NCCs are specified and migrate, but undergo cell death in areas both adjacent and distal to where Fgf8 is normally expressed. This study defines the cardiovascular defects present in Fgf8 mutants and supports a role for Fgf8 in development of all the pharyngeal arches and in NCC survival.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference60 articles.

1. Alsan, B. H. and Schultheiss, T. M. (2002). Regulation of avian cardiogenesis by Fgf8 signaling. Development129, 1935-1943.

2. Baker, C. V. and Bronner-Fraser, M. (1997). The origins of the neural crest. Part I: Embryonic induction. Mech. Dev.69, 3-11.

3. Casey, E. S., O’Reilly, M. A., Conlon, F. L. and Smith, J. C. (1998). The T-box transcription factor Brachyury regulates expression of eFGF through binding to a non-palindromic response element. Development125, 3887-3894.

4. Charite, J., McFadden, D. G., Merlo, G., Levi, G., Clouthier, D. E., Yanagisawa, M., Richardson, J. A. and Olson, E. N. (2001). Role of Dlx6 in regulation of an endothelin-1-dependent, dHAND branchial arch enhancer. Genes Dev.15, 3039-3049.

5. Chiang, C., Litingtung, Y., Lee, E., Young, K. E., Corden, J. L., Westphal, H. and Beachy, P. A. (1996). Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature383, 407-413.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3