The Snail repressor positions Notch signaling in the Drosophila embryo

Author:

Cowden John,Levine Michael1

Affiliation:

1. Department of Molecular and Cell Biology, Division of Genetics and Development, 401 Barker Hall, University of California, Berkeley, CA 94720, USA

Abstract

The maternal Dorsal nuclear gradient initiates the differentiation of the mesoderm, neurogenic ectoderm and dorsal ectoderm in the precellular Drosophila embryo. Each tissue is subsequently subdivided into multiple cell types during gastrulation. We have investigated the formation of the mesectoderm within the ventral-most region of the neurogenic ectoderm. Previous studies suggest that the Dorsal gradient works in concert with Notch signaling to specify the mesectoderm through the activation of the regulatory gene sim within single lines of cells that straddle the presumptive mesoderm. This model was confirmed by misexpressing a constitutively activated form of the Notch receptor, NotchIC, in transgenic embryos using the eve stripe2 enhancer. The NotchIC stripe induces ectopic expression of sim in the neurogenic ectoderm where there are low levels of the Dorsal gradient. sim is not activated in the ventral mesoderm, due to inhibition by the localized zinc-finger Snail repressor, which is selectively expressed in the ventral mesoderm. Additional studies suggest that the Snail repressor can also stimulate Notch signaling. A stripe2-snail transgene appears to induce Notch signaling in ‘naïve’ embryos that contain low uniform levels of Dorsal. We suggest that these dual activities of Snail, repression of Notch target genes and stimulation of Notch signaling, help define precise lines of sim expression within the neurogenic ectoderm.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3