Mechanical stress induces profound remodelling of keratin filaments and cell junctions inepidermolysis bullosa simplexkeratinocytes

Author:

Russell David1,Andrews Paul D.2,James John3,Lane E. Birgitte1

Affiliation:

1. Cancer Research UK Cell Structure Research Group, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dundee, DD1 5EH, UK

2. Division of Gene Regulation and Expression, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dundee, DD1 5EH, UK

3. Centre for High Resolution Imaging & Processing, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dundee, DD1 5EH, UK

Abstract

The outer epidermal layer of the skin is an epithelium with remarkable protective barrier functions, which is subject to pronounced physical stress in its day-to-day function. A major candidate component for absorbing this stress is the K5/K14 keratin intermediate filament network. To investigate the part played by keratins in stress resilience, keratinocyte cell lines were subjected to mechanical stress. Repeated stretch and relaxation cycles over increasing time produced reproducible changes in the configuration of the keratin network. When wild-type cells were compared with cells carrying a keratin mutation associated with severe epidermolysis bullosa simplex-type skin fragility, the mutant keratin filaments were unable to withstand the mechanical stress and progressively fragmented yielding aggregates and novel ring structures. The cell junctions into which the keratin filaments are normally anchored also progressively disassembled, with all components tested of the cytoplasmic plaques becoming relocated away from the membrane and onto the keratin rings, while integral membrane receptors integrins and cadherins remained at the plasma membrane. The results suggest that maintenance of desmosomes and hemidesmosomes may require some tension, normally mediated by keratin attachments.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3