Mechanical induction of oscillatory movement in demembranated, immotile flagella of sea urchin sperm at very low ATP

Author:

Izawa Yasuhide1,Shingyoji Chikako1ORCID

Affiliation:

1. Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan, and Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan

Abstract

Oscillation is a characteristic feature of eukaryotic flagellar movement. The mechanism involves the control of dynein-driven microtubule sliding under self-regulatory mechanical feedback within the axoneme. To define the essential factors determining the induction of oscillation, we developed a novel experiment by applying mechanical deformation of demembranated, immotile sea urchin sperm flagella at very low ATP concentrations, below the threshold of ATP required for spontaneous beating. Upon application of mechanical deformation at above 1.5 µM ATP, a pair of bends could be induced and was accompanied by bend growth and propagation, followed by switching the bending direction. For oscillatory, cyclical bending response to occur, the velocity of bend propagation towards the flagellar tip must be kept above certain levels. Continuous formation of new bends at the flagellar base was coupled with synchronized decay of the preceding paired bends. Induction of cyclical bends was initiated in a constant direction relative to the axis of the flagellar 9+2 structure, and resulted in the so-called principal bend. In addition, stoppage of the bending response occasionally occurred during development of a new principal bend, and in this situation, formation of a new reverse bend did not occur. This observation indicates the reverse bend is always active, opposing the principle bend. The results show that mechanical strain of bending is a central component regulating the bend oscillation, and switching of the bend direction appears to be controlled, in part, by the velocity of wave propagation.

Funder

the Japan Society for the Promotion of Science

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Calaxin is required for asymmetric bend initiation and propagation in sperm flagella;Frontiers in Cell and Developmental Biology;2023-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3