Aurora B and C kinases regulate chromosome desynapsis and segregation during mouse and human spermatogenesis

Author:

Wellard Stephen R.1,Schindler Karen2,Jordan Philip1ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA

2. Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA

Abstract

Precise control of chromosome dynamics during meiosis is critical for fertility. A gametocyte undergoing meiosis coordinates formation of the synaptonemal complex (SC) to promote efficient homologous chromosome recombination. Subsequent disassembly of the SC occurs prior to segregation of homologous chromosomes during meiosis I. We examined the requirements of the mammalian Aurora kinases (AURKA, B, and C) during SC disassembly and chromosome segregation using a combination of chemical inhibition and gene deletion approaches. We find that both mouse and human spermatocytes fail to disassemble SC lateral elements when the kinase activity of AURKB and AURKC are chemically inhibited. Interestingly, both Aurkb conditional knockout and Aurkc knockout spermatocytes successfully progress through meiosis and mice are fertile. In contrast, Aurkb, Aurkc double knockout spermatocytes failed to coordinate disassembly of SC lateral elements with chromosome condensation and segregation, resulting in delayed meiotic progression. In addition, deletion of Aurkb and Aurkc led to an accumulation of metaphase spermatocytes, chromosome missegregation, and aberrant cytokinesis. Collectively, our data demonstrates that AURKB and AURKC functionally compensate for one another ensuring successful mammalian spermatogenesis.

Funder

National Institute of General Medical Sciences

National Cancer Institute, NIH

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3