Blubber and buoyancy: monitoring the body condition of free-ranging seals using simple dive characteristics

Author:

Biuw Martin1,McConnell Bernie1,Bradshaw Corey J. A.2,Burton Harry3,Fedak Mike1

Affiliation:

1. Sea Mammal Research Unit, Gatty Marine Laboratory, University of St Andrews, St Andrews, Fife, KY16 8LB, Scotland

2. Antarctic Wildlife Research Unit, School of Zoology, University of Tasmania, GPO Box 252-05, Hobart, Tasmania 7001, Australia

3. Australian Antarctic Division, Channel Highway, Kingston, Tasmania 7050,Australia

Abstract

SUMMARYElephant seals regularly perform dives during which they spend a large proportion of time drifting passively through the water column. The rate of vertical change in depth during these `drift' dives is largely a result of the proportion of lipid tissue in the body, with fatter seals having higher (more positive or less negative) drift rates compared with leaner seals. We examined the temporal changes in drift rates of 24 newly weaned southern elephant seal(Mirounga leonina) pups during their first trip to sea to determine if this easily recorded dive characteristic can be used to continuously monitor changes in body composition of seals throughout their foraging trips. All seals demonstrated a similar trend over time: drift rates were initially positive but decreased steadily over the first 30-50 days after departure(Phase 1), corresponding to seals becoming gradually less buoyant. Over the following ∼100 days (Phase 2), drift rates again increased gradually,while during the last ∼20-45 days (Phase 3) drift rates either remained constant or decreased slightly. The daily rate of change in drift rate was negatively related to the daily rate of horizontal displacement (daily travel rate), and daily travel rates of more than ∼80 km were almost exclusively associated with negative changes in drift rate. We developed a mechanistic model based on body compositions and morphometrics measured in the field,published values for the density of seawater and various body components, and values of drag coefficients for objects of different shapes. We used this model to examine the theoretical relationships between drift rate and body composition and carried out a sensitivity analysis to quantify errors and biases caused by varying model parameters. While variations in seawater density and uncertainties in estimated body surface area and volume are unlikely to result in errors in estimated lipid content of more than±2.5%, variations in drag coefficient can lead to errors of ≥10%. Finally, we compared the lipid contents predicted by our model with the lipid contents measured using isotopically labelled water and found a strong positive correlation. The best-fitting model suggests that the drag coefficient of seals while drifting passively is between ∼0.49 (roughly corresponding to a sphere-shaped object) and 0.69 (a prolate spheroid), and we were able to estimate relative lipid content to within approximately±2% lipid. Our results suggest that this simple method can be used to estimate the changes in lipid content of free-ranging seals while at sea and may help improve our understanding of the foraging strategies of these important marine predators.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3