The Rapid Intermixing of Cell Surface Antigens After Formation of Mouse-Human Heterokaryons

Author:

FRYE L. D.1,EDIDIN M.2

Affiliation:

1. Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, U.S.A.; Present address: Immunochemistry Unit, Princess Margaret Hospital for Children, Subiaco, W.A. 6008, Australia.

2. Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, U.S.A.

Abstract

Cells from established tissue culture lines of mouse (cIID) and human (VA-2) origin were fused together with Sendai virus, producing heterokaryons bearing both mouse and human surface antigens which were then followed by the indirect fluorescent antibody method. Within 40 mm following fusion, total mixing of both parental antigens occurred in over 90% of the heterokaryons. Mouse H-2 (histocompatibility) and human surface antigens were visualized by successive treatment of the heterokaryons with a mixture of mouse alloantiserum and rabbit anti-VA-2 antiserum, followed by a mixture of fluorescein-labelled goat anti-mouse IgG and tetramethyl-rhodamine-labelled goat anti-rabbit IgG(Fc). The cIIDxVA-2 fusions were carried Out in suspension and maintained at 37°C in a shaking water bath; aliquots were removed at various intervals and stained with the above reagents. The heterokaryon population was observed to change from an initial one (5-min post-fusion) of non-mosaics (unmixed cell surfaces of red and green fluorescence) to one of over 90% mosaics (total intermixing of the 2 fluorochromes) by 40 min after fusion. Mouse-human hybrid lines, derived from similar fusions, gave fluorescence patterns identical to those of the mosaic heterokaryons. Four possible mechanisms would yield such results: (i) a very rapid metabolic turnover of the antigens; (ii) integration of units into the membrane from a cytoplasmic precursor pool; (iii) movement, or ‘diffusion’of antigen in the plane of the membrane; or (iv) movement of existing antigen from one membrane site into the cytoplasm and its emergence at a new position on the membrane. In an effort to distinguish among these possibilities, the following inhibitor treatments were carried out: (1) both short- and long-term (6-h pre-treatment) inhibition of protein synthesis by puromycin, cycloheximide, and chloramphenicol; (2) short-term inhibition of ATP formation by dinitrophenol (DNP) and NaF; (3) short- and long-term inhibition of glutamine dependent pathways with the glutamine analogue 6-diazo-5-oxonorleucine; and (4) general metabolic suppression by lowered temperature. The only treatment found effective in preventing the mosaicism was lowered temperature, from which resulted a sigmoidal curve for per cent mosaics versus incubation temperature. These results would be consistent with mechanisms iii and/or iv but appear to rule out i and ii. From the speed with which the antigen markers can be seen to propagate across the cell membrane, and from the fact that the treatment of parent cells with a variety of metabolic inhibitors does not inhibit antigen spreading, it appears that the cell surface of heterokaryons is not a rigid structure, but is ‘fluid’ enough to allow free ‘diffusion’ of surface antigens resulting in their intermingling within minutes after the initiation of fusion.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 483 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3