Affiliation:
1. Department of Physiology and Cell Biology, University of Nevada School of Medicine, 1664 North Virginia Street, MS 0575, Reno, NV, 89557, USA
Abstract
Although it is believed that mammalian sperm carry small noncoding RNAs (sncRNAs) into oocytes during fertilization, it remains unknown whether these sperm-borne sncRNAs truly have any function during fertilization and preimplantation embryonic development. Germline-specific Dicer and Drosha conditional knockout (cKO) mice produce gametes (i.e., sperm and oocytes) partially deficient in miRNAs and/or endo-siRNAs, thus providing a unique opportunity for testing whether normal sperm (paternal) or oocyte (maternal) miRNA and endo-siRNA contents are required for fertilization and preimplantation development. Using the outcome of intracytoplasmic sperm injection (ICSI) as a readout, we found that sperm with altered miRNA and endo-siRNA profiles could fertilize wild-type (WT) eggs, but embryos derived from these partially sncRNA-deficient sperm displayed a significant reduction in developmental potential, which could be rescued by injecting WT sperm-derived total or small RNAs into ICSI embryos. Disrupted maternal transcript turnover and failure in early zygotic gene activation appeared to associate with the aberrant miRNA profiles in Dicer and Drosha cKO spermatozoa. Overall, our data support a critical function of paternal miRNAs and/or endo-siRNAs in the control of the transcriptomic homeostasis in fertilized eggs, zygotes and 2-cell embryos. Given that supplementation of sperm RNAs enhances both the developmental potential of preimplantation embryos and the live birth rate, it may represent a novel means to improve the success rate of assisted reproductive technologies in fertility clinics.
Funder
National Institutes of Health
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
224 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献