Nervous control of ciliary beating by Cl-, Ca2+ and calmodulin inTritonia diomedea

Author:

Woodward Owen M.12,Willows A. O. Dennis12

Affiliation:

1. Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA

2. Friday Harbor Laboratories, University of Washington, 620 University Road,Friday Harbor, WA 98250, USA

Abstract

SUMMARYIn vertebrates, motile cilia line airways, oviducts and ventricles. Invertebrate cilia often control feeding, swimming and crawling, or gliding. Yet control and coordination of ciliary beating remains poorly understood. Evidence from the nudibranch mollusc, Tritonia diomedea, suggests that locomotory ciliated epithelial cells may be under direct electrical control. Here we report that depolarization of ciliated pedal epithelial (CPE)cells increases ciliary beating frequency (CBF), and elicits CBF increases similar to those caused by dopamine and the neuropeptide, TPep-NLS. Further,four CBF stimulants (zero external Cl-, depolarization, dopamine and TPep-NLS) depend on a common mode of action, viz. Ca2+influx, possibly through voltage-gated Ca2+ channels, and can be blocked by nifedipine. Ca2+ influx alone, however, does not provide all the internal Ca2+ necessary for CBF change. Ryanodine receptor(RyR) channel-gated internal stores are also necessary for CBF excitation. Caffeine can stimulate CBF and is sensitive to the presence of the RyR blocker dantrolene. Dantrolene also reduces CBF excitation induced by dopamine and TPep-NLS. Finally, W-7 and calmidazolium both block CBF excitation by caffeine and dopamine, and W-7 is effective at blocking TPep-NLS excitation. The effects of calmidazolium and W-7 suggest a role for Ca2+-calmodulin in regulating CBF, either directly or via Ca2+-calmodulin dependent kinases or phosphodiesterases. From these results we hypothesize dopamine and TPep-NLS induce depolarization-driven Ca2+ influx and Ca2+ release from internal stores that activates Ca2+-calmodulin, thereby increasing CBF.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference49 articles.

1. Aiello, E. (1990). Nervous control of gill ciliary activity in Mytilus edulis. In Neurobiology of Mytilus edulis. Vol. 10 (ed. G. B. Stefano), pp. 189-208. Manchester, New York:Manchester University Press.

2. Aiello, E. and Guideri, G. (1964). Nervous control of ciliary activity. Science146,1692-1693.

3. Audesirk, G. (1978). Central neuronal control of cilia in Tritonia diamedia. Nature272,541-543.

4. Barrera, N. P., Morales, B. and Villalon, M.(2004). Plasma and intracellular membrane inositol 1,4,5-trisphosphate receptors mediate the Ca(2+) increase associated with the ATP-induced increase in ciliary beat frequency. Am. J. Physiol.287,C1114-C1124.

5. Blackwell, K. T. and Alkon, D. L. (1999). Ryanodine receptor modulation of in vitro associative learning in Hermissenda crassicornis. Brain Res.822,114-125.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3