Balancing of ephrin/Eph forward and reverse signaling as the driving force of adaptive topographic mapping

Author:

Gebhardt Christoph1,Bastmeyer Martin1,Weth Franco1

Affiliation:

1. Zoological Institute, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany.

Abstract

The retinotectal projection, which topographically maps retinal axons onto the tectum of the midbrain, is an ideal model system with which to investigate the molecular genetics of embryonic brain wiring. Corroborating Sperry's seminal hypothesis, ephrin/Eph counter-gradients on both retina and tectum were found to represent matching chemospecificity markers. Intriguingly, however, it has never been possible to reconstitute topographically appropriate fiber growth in vitro with these cues. Moreover, experimentally derived molecular mechanisms have failed to provide explanations as to why the mapping adapts to grossly diverse targets in some experiments, while displaying strict point-to-point specificity in others. In vitro, ephrin-A/EphA forward, as well as reverse, signaling mediate differential repulsion to retinal fibers, instead of providing topographic guidance. We argue that those responses are indicative of ephrin-A and EphA being members of a guidance system that requires two counteracting cues per axis. Experimentally, we demonstrate by introducing novel double-cue stripe assays that the simultaneous presence of both cues indeed suffices to elicit topographically appropriate guidance. The peculiar mechanism, which uses forward and reverse signaling through a single receptor/ligand combination, entails fiber/fiber interactions. We therefore propose to extend Sperry's model to include ephrin-A/EphA-based fiber/fiber chemospecificity, eventually out-competing fiber/target interactions. By computational simulation, we show that our model is consistent with stripe assay results. More importantly, however, it not only accounts for classical in vivo evidence of point-to-point and adaptive topographic mapping, but also for the map duplication found in retinal EphA knock-in mice. Nonetheless, it is based on a single constraint of topographic growth cone navigation: the balancing of ephrin-A/EphA forward and reverse signaling.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3