Circadian changes in cyclic AMP levels in synchronously dividing and stationary-phase cultures of the achlorophyllous ZC mutant of Euglena gracilis

Author:

A. CARRÉ ISABELLE1,L. LAVAL-MARTIN DANIELLE2,N. EDMUNDS LELAND1

Affiliation:

1. Department of Anatomical Sciences, State University of New York, Stony Brook, New York 11794, USA

2. Department of Anatomical Sciences, State University of New York, Stony Brook, New York 11794, USA; Affiliated with the Laboratoire des Membranes Biologiques, Université Paris VII, F-75005 Paris, France

Abstract

Oscillations in adenosine 3′,5′-cyclic monophosphate (cyclic AMP) level have been proposed to be part of the biochemical feed-back loop(s), or ‘clock(8)’, believed to underlie circadian rhythmicity. This possibility has been examined for a cellular circadian oscillator in synchronously dividing (or nondividing) cultures of the photosynthesis- deficient ZC mutant of the alga Euglena gracilis Klebs (Z). We have demonstrated a bimodal, autonomously oscillating, circadian variation of cyclic AMP content in this unicell. Rhythmic changes of the cyclic AMP level, which may reflect the transition of the cell population through the different phases of the cell division cycle (CDC) in division-phased cultures, also persisted after the culture medium had become limiting and the cells had stopped dividing. We have also shown that the free-running, circadian oscillation of cyclic AMP content displayed by nondividing cells in continuous darkness could be phase-shifted by a light signal (a property inherent to most circadian systems), in a manner that could be predicted from the phase-response curve previously obtained for the cell division rhythm in the ZC mutant. These results suggest a possible role for cyclic AMP, either as an element of the coupling pathway for the control of the CDC by the circadian oscillator, or as a ‘gear’ of the clock itself.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3