Planarian Anatomy Ontology: a resource to connect data within and across experimental platforms

Author:

Nowotarski Stephanie H.12ORCID,Davies Erin L.13ORCID,Robb Sofia M. C.1ORCID,Ross Eric J.12ORCID,Matentzoglu Nicolas4,Doddihal Viraj1ORCID,Mir Mol1,McClain Melainia1ORCID,Sánchez Alvarado Alejandro12ORCID

Affiliation:

1. Stowers Institute for Medical Research, Kansas City, MO 64110, USA

2. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA

3. Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA

4. European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK

Abstract

ABSTRACT As the planarian research community expands, the need for an interoperable data organization framework for tool building has become increasingly apparent. Such software would streamline data annotation and enhance cross-platform and cross-species searchability. We created the Planarian Anatomy Ontology (PLANA), an extendable relational framework of defined Schmidtea mediterranea (Smed) anatomical terms used in the field. At publication, PLANA contains over 850 terms describing Smed anatomy from subcellular to system levels across all life cycle stages, in intact animals and regenerating body fragments. Terms from other anatomy ontologies were imported into PLANA to promote interoperability and comparative anatomy studies. To demonstrate the utility of PLANA as a tool for data curation, we created resources for planarian embryogenesis, including a staging series and molecular fate-mapping atlas, and the Planarian Anatomy Gene Expression database, which allows retrieval of a variety of published transcript/gene expression data associated with PLANA terms. As an open-source tool built using FAIR (findable, accessible, interoperable, reproducible) principles, our strategy for continued curation and versioning of PLANA also provides a platform for community-led growth and evolution of this resource.

Funder

National Institute of General Medical Sciences

Stowers Institute for Medical Research

Howard Hughes Medical Institute

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3